
A Neural Architecture for Unsupervised Temporal
Pattern Recognition

Shady El Damaty
Department of Neuroscience

Georgetown University
Washington, D.C. 20067
se394@georgetown.edu

James Maguire
Department of Linguistics

Georgetown University
Washington, D.C. 20067

jrm346@georgetown.edu

Abstract

In this paper we present a novel neuron architecture for unsupervised time depen-
dent neural networks. We provide a new delay function, based on a mixture of
Beta distributions, which addresses some of the problems with previous work in
this area. In addition we also present a new method of thresholding the potential of
a neuron based on input activations from both before and after the neuron spikes.
Preliminary results over two simple patterns show extremely high performance
on an unsupervised pattern segmentation task, learning in both clean and noisy
environments.

Introduction

Noisy time series signals pose numerous challenges for pattern recognition algorithms. The absence
of delimiters to signify the beginning and end of a pattern require either prior knowledge of the
pattern’s properties or a capability for identifying a pattern based on it’s statistical properties within
the input stream. Neural networks have shown great promise for temporal pattern recognition. A
popular approach for detecting unique patterns embedded in a noisy signal have centered around
representing the relative inputs of the constituent features that compose a pattern as a system of time
delays relative to pattern onset (Hopfield 1996, Tank & Hopfield 1987). Supervised algorithms with
time-delay neural networks have previously shown high performance rates (> 98%) for classification
of consonant phonemes (Waibel et al. 1989). The hidden layers within this model had learned
to represent acoustic-phonetic features for classification of phonemes nested within a noisy signal.
Current research has focused on developing unsupervised methods to learning acoustic-phonetic
features in real time. Spike-Timing Dependent Plasticity (STDP) is an unsupervised learning rule
derived from neurophysiological experiments (Izhikevich 2006). Neurons with an STDP learning
rule potentiate their weights as a function of the relative time between input arrival and the neuron’s
firing time. Inputs that arrive before the neuron emits a spike are potentiated whereas those that arrive
afterwards are depotentiated. A STDP learning rule drives the neuron to fire only for those inputs
that actually contributed to its activity. Recent work has implemented STDP with time-delay learning
for semi-unsupervised learning of weighted delays for spatio-temporal pattern recognition (Moisy et
al. 2015). Others have implemented unsupervised STDP with time-delay learning by initializing a
random system of time delays and retaining only those delays that represent the temporal structure of
the input (Rekabdar 2015). In this paper, we build upon previous literature for fully-unsupervised
learning of time-delays using a novel delay function based on the beta distribution.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Pattern Representation

Consider a noisy signal g(f , t) with spatial features f = [f1...fi] defined over a time interval
t = [t1...tk]. A unique first-order pattern within g(f , t) is defined as

ξ =
(
(fm, to)...(fn, te)

)
n ≥ m > 0 (1)

where ξ is a list of elements chosen from f and appearing within g(f , t) between each pattern start,
t0, and end, te, for a pattern duration c = te − to. Each characteristic feature, fx, on the interval
x ∈ [m...n] may appear more than once in ξ and is thus associated with a vector of times,

τ fx = [τp...τj] (2)

where j is the total number of times fx is present within c. The spatio-temporal signature of ξ is the
collected set of all orderings in time of every characteristic feature composing ξ,

T ξ = [τ fm ...τ fn] (3)

The consistent appearance of ξ at times T ξ constitutes a statistically reproducible pattern that may
be learned by an unsupervised algorithm sensitive to the statistical properties of g(f , t). Pattern ξ is
called a first-order pattern in time series g(f , t) if the signature Tξ is a statistically regular sequence
unique to ξ and not any other overlapping patterns in g(f , t).

Neuron Architecture

The set of features that characterize a given ξ nested within a noisy time series may be detected
by a neuron, n, receiving feedforward input from a set of feature detector units, s = [s1...si], in
one-to-one correspondence with f .

Each unit in s converts a binary value indicating the presence of an input at a time τs ∈ TS into a
time-varying signal driving n over interval t. Recognition of ξ occurs when the activity of n exceeds
a suprathreshold value, γ, and emits a spike to signal the detection of the spatio-temporal signature,
TS . The threshold must be set sufficiently high enough to filter out spurious activation and also such
that n will only fire when all inputs arrive at the same time. Coincident arrival may only occur if all
inputs activate at the same time or if the arrival time of the input from each unit in s is sufficiently
delayed relative to the final detected feature. This constraint is satisfied if each input has a delay
function d = [ds1(z)...dsi(z)], where z is a positive real value and the neuron potential is written as
the summation over the input activations within a window since the neuron last fired, φ,

h(t, φ) =
∑

τs∈φ

ds(t− τs) (4)

such that t is the current time of the signal g(f , t). This architecture is illustrated in Figure 1a. The
neuron fires a binary spike at time τn if h(t, φ) > γ. However, if the temporal structure of activated
inputs does not correspond to Tξ then the arrival times are all out of phase with each other and the
potential of the neuron never exceeds γ as shown in Figure 1b.

ds1
(z)

ds2
(z)

n

ds1
(z)

ds3
(z)

ds2
(z)

ds3
(z)

h(t, �) =
X

⌧s2�

ds(t� ⌧s) ⌧s1
⌧s2

⌧s3⌧s1,s2,s3

h(t, �)h(t, �)

Figure 1: Architecture of a Single Pattern Detecting Neuron

2

Novel Delay Function

The choice of the delay function is crucial for achieving the previously mentioned constraints for n
emitting a spike in response to a detected pattern ξ. A popular choice in the literature is the application
of weighted fixed delay functions, where the value of the function is dependent solely on the time
since input activation, dfixed(z). An example of a weighted fixed delay function appears in Figure
2. Learning with this kind of delay function consists of modulating the height of the delay function,
dfixed(z), to push the pattern-detecting neuron over threshold. A major limitation of these models
is that such a representation does not allow for the peak value of the delay function to be shifted in
time according to the temporal statistics of the pattern to be learned. The beta distribution is ideal for

w1dfixed(t) dvar(t, ⌧, ↵1, �1)

No Training

⌧n

w2dfixed(t) dvar(t, ⌧, ↵2, �2)

⌧n

Figure 2: Fixed vs. Variable Delay Functions

representing temporal delays due to its adjustable hyperparameters, α, β. These hyperparameters can
be adjusted to move the peak value of the distribution in any direction (Figure 2). This means that the
peak values of the input functions can be adjusted to arrive coincidentally thus creating a spike in the
potential of the neuron as observed in Figure 1b. Taking inspiration from spike-timing dependent
plasticity (STDP) models, the peak of the delay function is skewed based on the relative difference
between input activation, τs, and neural firing time, τn. Thus the arrival time of the peak of the delay
function is learned to ensure coincidental arrival across inputs at firing time. The beta distribution
can be defined as function of the gamma distribution, Γ, where z ∈ [0, 1] and α, β ≥ 0

β(z, α, β) =
Γ(α+ β)

Γ(α)Γ(β)
· zα−1(1− z)β−1 (5)

The maximal duration of the delay function is a hyperparameter, c, which should be selected based
on the expected length of the input pattern. The pattern duration must be appropriately scaled since
the beta distribution is only defined on the interval z ∈ [0, 1]. In order to calculate the value of the
beta delay function at time t with an input activation time τsi , z is defined as:

z =
(t− τsi)

c
(6)

The variable delay function dvar with hyperparameters α and β updated during learning, can be
written as:

dvar(t, τ, α, β) =
Γ(α+ β)

Γ(α)Γ(β)
·
(
t− τsi
c

)α−1(
1− t− τsi

c

)β−1

(7)

Beta Mixtures

While the definition of dvar with only a single beta distribution allows for learning the delay time
of an input which is activated only once within the pattern window, c, it fails to approximate the
appropriate delay for when an input activates multiple times within c. In order to resolve this problem,
dvar is defined as a mixture of beta distributions as follows,

dvar(t, τ,α,β) =

∑

α,β ∈ α,β

Γ(α+ β)

Γ(α)Γ(β)
·
(
t− τsi
c

)α−1(
1− t− τsi

c

)β−1

(8)

3

where α and β are vectors of α and β values respectively. If fvar is activated in the correct sequence,
the multiple peaks corresponding to different input activation times will all arrive in phase. Coincident
input will drive the neuron potential, now defined as:

h(t, φ) =
∑

τs ∈ φ

dvar(t, τ,α,β) (9)

to spike and exceed γ. The difference between a mixture and a single component distribution is
exemplified in figure 3.

MixtureSingle

h(t, � [)

Figure 3: Representing Multiple Inputs with a Beta Mixture

Setting the Threshold

Integrate and fire neurons generally possess either a fixed or variable threshold which is dependent
on the potential of the neuron at firing. The problem with a fixed threshold is that a static γ causes
the firing time, τn of the neuron to be prior to the end of the pattern, generally causing τn to move
to the beginning of the pattern. This is problematic as the neuron only detects the onset and not the
complete duration of the pattern. Some groups have addressed this by assembling multiple neurons
to represent a single pattern. A static threshold can also be easily overwhelmed by increased noise in
the signal. This issue can be addressed with a single neuron that fires at the end of ξ by defining,

φ = {τ | (t− τs) ≤ c and τn < τs} (10)
ψ = {τ | (t− τs) ≤ c and τn ≥ τs} (11)

where φ is the set of input activations within the window, (t− τs) ≤ c, since the neuron last fired,
τn < τs, and ψ is the set of activations within the window prior to the neuron’s last firing τn ≥ τs.
In contrast to previous work, where the thresholds are dependent on the potential of the network at
firing, we define γ to consider the potential of activations for both before and after firing:

γ = f(h(t, φ), γ) (12)

γ = f(h(t, φ), h(t, ψ), γ) (13)

P
ot

en
ti
al

(a
.u
)

φ ψ γ

⌧n

h(t, �)
h(t,)

�

Figure 4: Contribution of Potential to Threshold

4

Learning Rules

In the described neural architecture, there are two sets of parameters that must be learned, the vectors
α and β to approximate the delay function for each input given Tξ and the threshold γ of the neuron.

Updating the Delay Function

α and β are initialized to [2], [2] for all inputs. The rate of learning is adjustable based on a
hyperparameter η which determines the rate of change in the skew of an input activation time brought
about by redistributing values in α and β.

Weight Redistribution. Redistribution of α and β values amongst a mixture of betas representing
some input feature f is important for winnowing out those component delay functions that do not
significantly contribute to the neuron’s potential while increasing the amplitude of the components
with the largest peaks. Thus unused beta functions decay to 0, leaving only the input-specific
components in the mixture. Weight redistribution is accomplished with two functions, Subtract and
Add Weights. For each input, a variable w is defined to represent the total sum of α and β that must
be redistributed amongst the mixtures composing that input. A factor of η is taken from all α, β pairs
as shown in Subtract Weight (Algorithm 1). The subtracted value w is then added only to those
pairs that contribute the most to h(x), incrementing them in proportion to their total contribution
(Algorithm 2). The α and β pairs that contribute most to the neuron’s potential are identified by
ordering all pairs from greatest to least using a function ORDERED. The contingency of additional
inputs being encountered is addressed by function, INCREASE, in the add weights function. This
function evaluates whether a given input is activated more times than the number of α, β pairs for
that input and if so adds additional pairs as required.

Algorithm 1 Weight Subtraction

1: procedure SUBTRACT WEIGHT
2: w ← 0
3: for s ∈ S do
4: for αj , βj ,∈ αsi ,βsi do
5: w ← w + ηαj + ηβj
6: αj ← αj − ηαj
7: βj ← βj − ηβj
8: w ← w/|φ|
9: return w

Algorithm 2 Weight Addition

1: procedure ADD WEIGHT(w)
2: for s ∈ {s | τs ∈ φ} do
3: if | τsi | > |Asi | then . # of activations > than # of distributions
4: INCREASE(αsi , | τsi |)
5: INCREASE(βsi , | τsi |)
6: count← 0
7: while count < | τsi | do
8: α, β ←ORDERED(αsi , βsi)[count]
9: ratioα ← α/(α+ β)

10: ratioβ ← β/(α+ β)
11: α← α+ w ∗ ratioα
12: β ← β + w ∗ ratioβ
13: count← count+ 1

Skewing the Beta to Represent Structure in Time. The skew in time of each component dis-
tribution is evaluated after the α, β weights have been redistributed towards the most contributing
functions. The process for skewing the beta functions comprising the mixture for each input is

5

outlined in Algorithm 3. Only the most contributing α, β pairs are skewed. The skew is computed
as the difference between the scaled firing time z and the peak time of a given α, β pair. A given
component distribution is moved to the right/left if it occurs before/after firing time, τn, resulting in
entrainment of τn to occur at the end of pattern ξ.

Algorithm 3 Adjusting Skew of Delay

1: procedure SKEW
2: for s ∈ {s | τs ∈ φ} do
3: counter ← 0
4: while counter < |{τsi ∈ φ}| do
5: α, β = ORDERED(αsi ,βsi)[count]
6: skew= x− ((α− 1)/(α+ β − 2))
7: if skew< 0 then . Peak of the distribution is to the right of τn
8: redist← αη ∗ −skew . Move peak to the left
9: α← α− redist

10: α← β + redist
11: else . Peak of the distribution is to the left of τn
12: redist← ηβ ∗ skew . Move peak to the right
13: β ← β − redist
14: α← α+ redist

Adaptive Thresholding

Recognition of a pattern ξ embedded in a noisy time series occurs when n exceeds a threshold y and
emits a spike. The value of γ must be set high enough to filter out noisy inputs but not too high so as
to prevent n from ever firing. An adaptive threshold dependent on the total potential before and after
firing is detailed in Algorithm 4. The threshold is incremented as a function of the total potential
windowed around τn and multiplied by learning rate η.

Algorithm 4 Adaptive Threshold

1: procedure UPDATE THRESHOLD
2: if η ∗ (h(t, φ) + h(t, ψ)) > γ then
3: γ ← η ∗ (h(t, φ) + h(t, ψ))

4: if h(t, φ) > γ then
5: γ ← η ∗ h(t, φ)

Simple-Patterns

Here we present preliminary results using the proposed learning algorithm on simple patterns. Sounds
composed of simple frequency sweeps in time with 200ms duration were generated and Fourier
transformed to generate our g(f , t) which is a time-frequency spectrogram where f is defined over
the set of frequencies that sum linearly to reconstruct the original time-domain signal. The algorithm
was initialized with η = 0.1 for both the threshold update and weight redistribution rule with 10
distributions composing the initial beta mixture. The window was set to 1.5x the length of the pattern.
The network was trained and tested on left and right chevron shaped frequency sweeps in time both
with and without 1:1 signal to noise ratio. Training on clean images resulted in 100% classification
accuracy after only 15 presentations. The network also exhibited perfect performance noisy images
resulted in 100% classification accuracy but only after 50 presentations (Figure 5).

Discussion

Here we propose a new model for unsupervised recognition of patterns nested within a noisy time
series signal. The model was able to learn different simple images embedded in noise with 100%
classification rate after only 50 training presentations. The internal representation of the time delays

6

H
z

time (s)

10000

6000

2000

0.30.20.1 0.4
0 100 200

Relative Time (ms)

0

2000

4000

6000

8000

10000

Fr
eq
ue

nc
y
(H

z)
H

z

10000

6000

2000

T ime(s) Relative to ⌧n

(b) Clean Right Chevron

H
z

time (s)

10000

6000

2000

0.30.20.1 0.4
0 100 200

Relative Time (ms)

0

2000

4000

6000

8000

10000

Fr
eq
ue

nc
y
(H

z)
H

z

10000

6000

2000

T ime(s) Relative to ⌧n

(c) Clean Left Chevron

H
z

time (s)

10000

6000

2000

0.30.20.1 0.4
0 100 200

Relative Time (ms)

0

2000

4000

6000

8000

10000

Fr
eq
ue
nc
y
(H

z)
H

z

10000

6000

2000

T ime(s) Relative to ⌧n

(e) Noisy Right Chevron

H
z

time (s)

10000

6000

2000

0.30.20.1 0.4
0 100 200

Relative Time (ms)

0

2000

4000

6000

8000

10000

Fr
eq
ue
nc
y
(H

z)
H

z

10000

6000

2000

T ime(s) Relative to ⌧n

(f) Noisy Left Chevron

Figure 5: Model Network Performance. The model was trained on simple patterns with and without
noise as shown in column 1. The internal representation of the trained pattern is shown in column 2.
Note the internal representation is a mirror image of the input pattern since earlier inputs must be
delayed greater features at the end of the pattern.

in the form of the beta mixture was sharpened with training to reflect the arrival times of each of
the feature inputs relative to neuron firing time. The internal representation sharpens with increased
training presentations and greater number of initial mixture components. Our results demonstrate the
choice of a beta distribution for representing time delays of an input with adaptive thresholding is a
promising method for development of unsupervised learning temporal pattern algorithms. Future
work is required to evaluate the performance of this algorithm on various temporal pattern structures
and with different hyper parameter settings.

References

[1] Hopfield, J.J (1995) Pattern Recognition Computation Using Action Potential Timing for Stimulus Represen-
tation. Nature 376(6):33-36.

[2] Hopfield, J.J (1996) Transforming Neural Computations and Representing Time. Proc. Natl. Acad. Sci
93:15440-15444

[3] Izhikevich, E.M (2005) Polychronization: Computation with Spikes. Neural Computation 18:245-282.

[3] Rekabdar, B., Nicolescu, M., Kelley R., & Nicolescu, M. (2015) An Unsupervised Approach to Learning and
Early Detection of Spatio-Temporal Patterns Using Spiking Neural Networks. Intell Robot Sys 80:83-97

[4] Paugam-Moisy, H., Martinez, R., & Bengio, S. (2006) A Supervised Learning Approach Based on STDP
And Polychronization in Spiking Neuron Networks. Proc. Natl. Acad. Sci 84:1896-1900

[5] Tank, D.W. & Hopfield, J.J (1987) Neural Computation by Concentrating Information in Time. Proc. Natl.
Acad. Sci 84:1896-1900

[6] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K.L (1989) Phoneme Recognition Using
Time-Delay Neural Networks. IEEE Transactions on Acoustics, Speech & Signal Processing 37(3):328-338.

[7] Vries, B. & Principe, J.C (1992) The Gamma Model - A New Neural Model for Temporal Processing. Neural
Networks 5:565-576

7

